Identifying the function of VSIG4 as seen in the tumor microenvironment of Glioblastoma

Dr. Courtney Crane /Crane Lab

Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute

Neurological Surgery Student Summer Program

Cienna Slattery

Scientificamerica.com

Glioblastoma (GBM)

- Most aggressive primary brain tumor
- 5 year survival rate less than a 10%
- Invasive nature makes it impossible to completely remove surgically
- Immunotherapies have failed to provide a survival benefit due to
 - Blood Brain Barrier
 - Tumor Microenvironment
 - Immune privileged organ

<u>Tumor - associated</u> <u>macrophages</u> (TAMS)

- The most abundant immune cell in GBM
- Initiate development of pro tumor microenvironment
- Key in communication between the innate and adaptive immune system

VSIG4

The Crane lab performed a single cell RNA sequencing of TAMs and found that the protein VSIG4 is significantly upregulated in GBM TAMs (in vivo)

- Increased VSIG4 is also correlated with poor patient prognosis
- The Crane lab found that upon the treatment of macrophages with GBM supernatant, VSIG4 expression increased in vitro via qPCR

The experiment: mRNA analysis (by Nanostring)

Question

Does the overexpression of VSIG4 lead to changes in global gene expression?

Groups:

- 1. Control human macrophages (n=3)
- 2. VSIG4overexpressing human macrophages (n=3)

Changes in glucose and glutamine metabolism

- Upregulation of GLUL (glutamine Synthetase)
- Downregulation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase)

Conclusions and future directions

VSIG4 plays a crucial role in TAM survival and due to VSIG4's role in TAM survival, it is a strong candidate for further study

Using this information, we can:

- Run further experiments on VSIG4 examining the molecular factors causing its overexpression
- Examine other genes that may have a role in shifting TAMs to a fatty acid metabolism
- ► Engineer immunotherapies targeting VSIG4
- ► Block the upregulation of VSIG4 in TAMs

Acknowledgements

Crane Lab Courtney Crane, PhD Stephanie Balcaitis Katie Brempelis, PhD Harrison Chinn Courtney Cowan Amira Davis Jennifer Gardell, PhD Shannon Kreuser **Nicole Lieberman, PhD** Ciana Lopez Lisa Matsumoto **Brooke Prieskorn**

Neurological Surgery Summer

Student Program

Dr. Ellenbogen Mrs. Ellenbogen Jim Pridgeon Dr. Christine Mac Donald Julie Bould Sylvia Zavatchen UW Neurological Surgery Donors, Faculty, Staff, and Residents

Grants

NIH NINDS 5R25NS095377-04 Summer Research Experience in Translational Neuroscience and Neurological Surgery

