Identifying the function of VSIG4 as seen in the tumor microenvironment of Glioblastoma

Dr. Courtney Crane /Crane Lab
Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute
Neurological Surgery Student Summer Program
Cienna Slattery
Glioblastoma (GBM)

- Most aggressive primary brain tumor
- 5 year survival rate less than a 10%
- Invasive nature makes it impossible to completely remove surgically
- Immunotherapies have failed to provide a survival benefit due to
 - Blood Brain Barrier
 - Tumor Microenvironment
 - Immune privileged organ
Tumor-associated macrophages (TAMS)

- The most abundant immune cell in GBM
- Initiate development of pro-tumor microenvironment
- Key in communication between the innate and adaptive immune system
VSIG4

The Crane lab performed a single cell RNA sequencing of TAMs and found that the protein VSIG4 is significantly upregulated in GBM TAMs (in vivo)

- Increased VSIG4 is also correlated with poor patient prognosis

- The Crane lab found that upon the treatment of macrophages with GBM supernatant, VSIG4 expression increased in vitro via qPCR
The experiment: mRNA analysis (by Nanostring)

Question
Does the overexpression of VSIG4 lead to changes in global gene expression?

Groups:
1. Control human macrophages (n=3)
2. VSIG4-overexpressing human macrophages (n=3)
Changes in glucose and glutamine metabolism

- Upregulation of GLUL (glutamine Synthetase)
- Downregulation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase)

Tumor Cell

Glucose metabolism

Glutamine metabolism

TAM

Glucose metabolism

Glutamine metabolism

TAM supports tumor cell survival
Conclusions and future directions

VSIG4 plays a crucial role in TAM survival and due to VSIG4’s role in TAM survival, it is a strong candidate for further study.

Using this information, we can:

- Run further experiments on VSIG4 examining the molecular factors causing its overexpression.
- Examine other genes that may have a role in shifting TAMs to a fatty acid metabolism.
- Engineer immunotherapies targeting VSIG4.
- Block the upregulation of VSIG4 in TAMs.
Acknowledgements

Crane Lab
Courtney Crane, PhD
Stephanie Balcaitis
Katie Brempelis, PhD
Harrison Chinn
Courtney Cowan
Amira Davis
Jennifer Gardell, PhD
Shannon Kreuser
Nicole Lieberman, PhD
Ciana Lopez
Lisa Matsumoto
Brooke Prieskorn

Neurological Surgery Summer Student Program
Dr. Ellenbogen
Mrs. Ellenbogen
Jim Pridgeon
Dr. Christine Mac Donald
Julie Bould
Sylvia Zavatchen

Grants
NIH NINDS 5R25NS095377-04
Summer Research Experience in Translational Neuroscience and Neurological Surgery

UW Neurological Surgery Donors, Faculty, Staff, and Residents