Applications and Research with Iron Oxide Nanoparticles

Alexa Shikiar

Dr. Miqin Zhang Dr. Richard Ellenbogen

Department of Materials Science and Engineering University of Washington

Background

-Iron Oxide Nanoparticles (IONPs) consist of an $F_{\mbox{gO}_4}$ core, of which biocompatible polymers can be attached

-Fe₃O₄ is superparamagnetic at the nanoscale; can be detected under MRI

- $\mathrm{Fe}_{\!3}\mathrm{O}_4$ is biocompatible and biodegradable

- Iron oxide core can be coated in various biocompatible polymers, including polyethylene glycol (PEG), chitosan (shell, protects from body removal)

- To these polymers, we can attach various drugs and cellular targeting agents, for targeted drug delivery

-Therapeutic drugs may include Paclitaxel, Temozolomide, Benzylguanine, or other chemotherapy agents. Main targeting agent is Chlorotoxin (derived from scorpion venom).

The Challenge of Storage for Clinical Translation

-in order for a clinical translation of the IONPs, they must be able to retain certain properties and stability during shipping and storage

-current means of storage and transportation is freeze drying/lyophilization, ideally up to several months

-however, current efforts at freeze drying these particles often results in the particles aggregating and their stability being greatly reduced (lyophilization is poorly understood)

- the long term goals are to maintain size, magnetic visibility, targeting ability, and efficacy, while simultaneously minimizing oxidation.

Applications

-There are multitudes of applications for IONP still in development

-Dr. Ellenbogen and Dr. Zhang's lab focuses on targeted drug therapies for cancer treatment

-IONPs are especially effective in targeting hardto-reach tumors while minimizing invasive procedures and unwanted chemical exposure to healthy tissue

- Great potential in also using IONPs to image the brain using MRI (targeting areas of the brain DAT, neurological disorder understanding)

Research and Results

-Size is an important property for in vivo applications; size must be retained after freeze drying and storage

-The ideal size range is between 10100nm, if too small (<10nm) will be filtered out by the kidney, if too large (>100 nm) it will be removed via liver/spleen

-wanted to utilize different surfactants previously mentioned in literature. We narrowed our list of surfactants to glucose, dextrose, sucrose, sorbitol, mannitol, PEG 600, and glycerol.

-Made combinations of IONP with various concentrations of the surfactants (0-20% weight by volume); freeze dried, and monitored stability of the particles

-Measured hydrodynamic size in biological media

Research, Results, and Conclusion

-after the sizes were measured, the results were analyzed and graphed in excel

-we narrowed down the list of viable surfactants to 5, removing PEG 600 and glycerol from further studies

-we want to continue to test different storage conditions: various temperatures (freezer vs fridge vs room temp), various transporting conditions (dry ice vs. ice pack), etc.

-find ideal condition for long term storage and transportation

Thank You

Various Donors, Doctors, and Participants in the program

Dr. and Mrs. Ellenbogen

Mr. Pridgeon

Ms. Smith

Zach Stephen

Mike Jeon

NIH NINDS R25NS095377 - Summer Research Experience in Translational Neuroscience and Neurological Surgery