Investigating the relationship between peak alpha frequency and intrinsic neural timescales

DYLAN SENESCALL, NSSSP INTERN, GRID LAB

AUGUST 2025

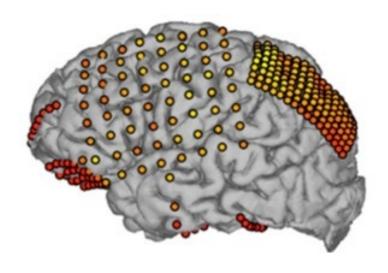
NIH/NINDS R25NS095377

Developmental Neurophysiology

What is it?

 How the brain's functional properties change as it matures

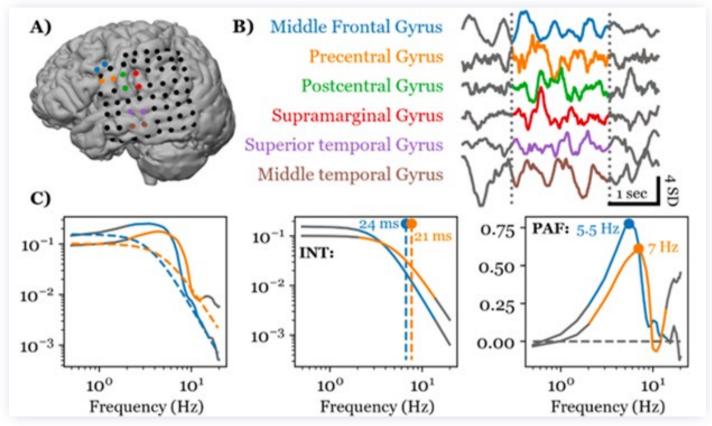
Why should we study it?


- Better understanding of typical human functioning and development
- Uncovering mechanisms of dysfunction in complex behaviors (ex. neurodevelopmental disorders)

Source: Neurophysiology. (n.d.). Department of Physiology. Retrieved August 11, 2025, from https://www.mcgill.ca/physiology/research/neurophysiology

Methodology

Approach. (n.d.). Parvizi Lab. Retrieved August 13, 2025, from https://med.stanford.edu/parvizi-lab/approach.html


Electrocorticography (ECoG)

- In treatment-resistant epilepsy patients in Epilepsy
 Monitoring Units (Harborview Medical Center & Seattle
 Children's)
- n = 13, aged 3 to 33
- Resting-state recording (~3-6 minutes)
- 6 recording sites across cortical surface
- Sampling rate between 500-4000 Hz depending on hardware

Data Analysis:

Peak Alpha Frequency (PAF) and Intrinsic Neural Timescale (INT)

PAF & INT from ECoG reading

Miles, J. et al (2025). Developmental relationships between the human alpha rhythm and intrinsic neural timescales are dependent on neural hierarchy [Unpublished manuscript].

Important terminology

Power spectrum:

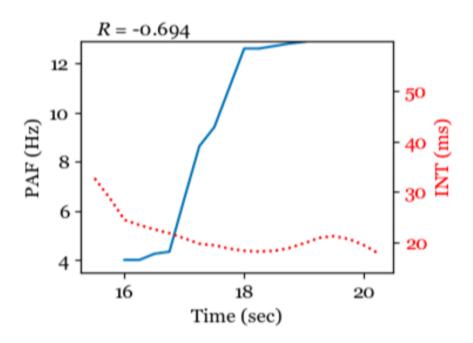
 Graph displaying frequencies and their power (prominence in the overall signal)

INT:

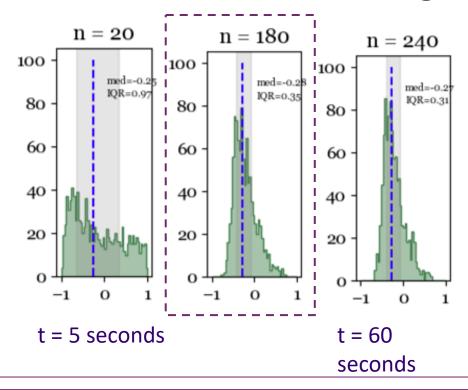
- How long a brain region holds onto information before resetting (long timescales = region holds on longer)
- Calculated from overall shape of power spectrum

PAF:

- Frequency in alpha range with highest power
- Calculated from peak in power spectrum


Generating Questions/Hypotheses

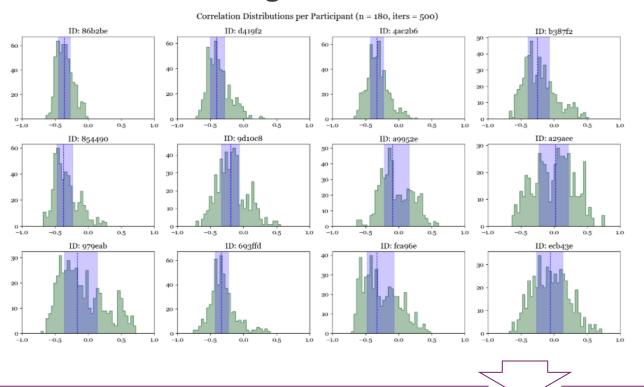
1. Are these measures correlated (over a short timespan)?


1. Does brain region type, age, or individual differences describe the distribution patterns?

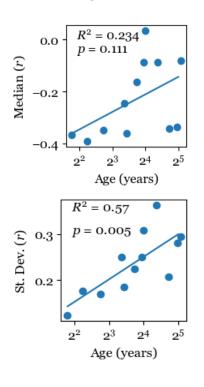
1. Are these measures correlated?

Correlation between PAF & INT

PAF & INT from ECoG reading



Over a short time period, PAF and INT tend to be negatively correlated (~-0.27). There also seems to be a series of readings that are slightly positively correlated.


DENTIAL – DO NOT DISTRIBUTE UW Medicine

2. Do age or individual differences explain the distribution?

Correlation histograms of individual data

Summary statistics

The variation in PAF/INT correlation appears to increase with age.

CONFIDENTIAL – DO NOT DISTRIBUTE

UW Medicine

Closing remarks

Limitations

- Epilepsy pathology
- Number of participants
- Depth/breadth of analysis

Next steps

- Analyze other factors that may contribute to the observed correlations
- Investigate this relationship in a larger dataset (more EMU patients, healthy participants with MEG)
- Investigate this relationship in patients with neurodevelopmental disorders
- Replicate with stereo EEG data (subcortical information)

CONFIDENTIAL – DO NOT DISTRIBUTE

Acknowledgements

NSSSP Program Donors & Organizers

- Dr. Rich Ellenbogen
- Mrs. Sandy Ellenbogen
- Dr. Thabele Leslie-Mazwi
- Dr. Christine Mac Donald
- Jana Pettit
- Jim Pridgeon
- Megan Osika-Dass
- Julie Bould

Mentors & GRID Lab Members

- Jesse Miles
- Dr. Jeff Herron
- Dr. Jeff Ojemann
- Everyone else in the GRID lab!