Visualizing spinal cord tissue perfusion in real-time

Hofstetter Lab
Neurological Surgery Summer Student Program 2019
Jinci Lu
Background

• Traumatic spinal cord injury (tSCI)
 • Motor and sensory deficit caudal to level of injury: bowel, bladder, sexual dysfunction
 • Complete loss of blood flow at injury center
 • Ischemia or hypoperfusion of penumbra \rightarrow secondary cell death

Problem: Lack of non-invasive clinical imaging biomarker for injury severity and to identify the penumbra
Novel Technique

Proposed Solution:
ultrafast contrast enhanced ultrasound (CEUS) doppler
- Local blood perfusion predicts lesion severity and functional deficits

Validate CEUS doppler with golden standard technique (microsphere deposition)
Experimental Set Up

- Carotid artery catheterization → fluorescent microsphere injection
 - rate: 1 mL for 2 mins
 - red and yellow fluorescent microsphere (15 μm)
- Tail vein catheterization → microbubbles for ultrasound
 - ~ 0.15 mL per injection
- T8-10 laminectomy: 150 kdyn injury at T9

Pre-injury → Injury at T9 → Post-injury
Microsphere Processing

C:

D:

- Distance along cord (mm)
- Microspheres
CEUS Image Processing

Baseline

Injury

Measure signal intensity every 1 mm segment (total of 12 mm)
Pre-injury vs. Post-injury

Microsphere Deposition

Number of Microsphere per Volume of Tissue

Signal Intensity per Volume of Tissue

CEUS

Rostral (R) Caudal (C) R C

Number of Microspheres

Distance (mm) Caudal (C)

Rostral (R) Caudal (C) R C

Signal Intensity

Distance (mm) Caudal (C)
Percent Loss

Microsphere Deposition

CEUS

Microsphere Percent Loss

Signal Intensity Percent Loss
Discussion

Conclusion
• CEUS has better spatial resolution
• Better temporal resolution
 • Real time visualization of hemodynamic changes
• Intravital imaging
• Intraoperative usage

Ongoing and Future Directions
• Include absolute tissue perfusion
• Hemodynamics of chronic injury
• 3D CEUS parametric maps
• Use as clinical tool to evaluate lesion mapping, severity, and rescue-able zone in real-time
Human CEUS: Spine Tumor

Detecting tumor borders to aid during surgery
Acknowledgement

- **Chair & Program Director**: Richard G. Ellenbogen, MD, FACS
- **Program Executive Advisor**: Sandra Ellenbogen, RN
- **Hofstetter Lab**: Christoph P. Hofstetter, MD, PhD; Zin Khaing, PhD; Matt Bruce, PhD; Lindsay Cates, Jeff Hyde
- **Department Director**: Jana Pettit, MBA
- **Program Administrators**: Christine Mac Donald, PhD; Jim Pridgeon, MHA; Sylvia Zavatchen, MEd
- **Program Coordinator**: Julie Bould
- **Jeff Ojemann**

Funding Agencies:
- NIH NINDS Grant: Summer Research Experience in Translational Neuroscience and Neurological Surgery (Grant number: 5R25NS095377-04)
- Department of Neurological Surgery
- Royalty Research Funds
- Institute of Translational Health Sciences
- Washington Spinal Cord Injury Consortium
- The Craig Nielsen Foundation
- DoD CDMRP
- Raisbeck Foundation
And we are fun!

Captain Hofstetter