

Visualizing spinal cord tissue perfusion in real-time

Hofstetter Lab

Neurological Surgery Summer Student Program 2019

Jinci Lu

Background

- Traumatic spinal cord injury (tSCI)
 - Motor and sensory deficit caudal to level of injury: bowel, bladder, sexual dysfunction
 - Complete loss of blood flow at injury center
 - Ischemia or hypoperfusion of penumbra \rightarrow secondary cell death

<u>Problem</u>: Lack of non-invasive clinical imaging biomarker for injury severity and to identify the penumbra

Novel Technique

Proposed Solution: ultrafast contrast enhanced ultrasound (CEUS) doppler

 Local blood perfusion predicts lesion severity and functional deficits

Validate CEUS doppler with golden standard technique (microsphere deposition)

Injury **Baseline** Perfusion 08 09 05 30 20 ⁸ 10 80 0 30 40 20 Flow 10 80 Velocity cm/sec 80 -50 0 50 -50 0 50 mm mm

Moderate contusion injury

Experimental Set Up

- Carotid artery catheterization → fluorescent microsphere injection
 - rate: 1 mL for 2 mins
 - red and yellow fluorescent microsphere (15 μm)
- Tail vein catheterization → microbubbles for ultrasound
 - ~ 0.15 mL per injection
- T8-10 laminectomy: 150 kdyn injury at T9

Microsphere Processing

Distance along cord (mm)

CEUS Image Processing

Baseline Injury

Measure signal intensity every 1 mm segment (total of 12 mm)

Pre-injury vs. Post-injury

Microsphere Deposition

CEUS

pre-injury post-injury

Percent Loss

Microsphere Deposition

CEUS

Discussion

Conclusion

- CEUS has better spatial resolution
- Better temporal resolution
 - Real time visualization of hemodynamic changes
- Intravital imaging
- Intraoperative usage

Ongoing and Future Directions

- Include absolute tissue perfusion
- Hemodynamics of chronic injury
- 3D CEUS parametric maps
- Use as clinical tool to evaluate lesion mapping, severity, and rescue-able zone in real-time

Human CEUS: Spine Tumor

Detecting tumor borders to aid during surgery

Acknowledgement

- Chair & Program Director: Richard G. Ellenbogen, MD, FACS
- Program Executive Advisor: Sandra Ellenbogen, RN
- Hofstetter Lab: Christoph P. Hofstetter, MD, PhD; Zin Khaing, PhD; Matt Bruce, PhD; Lindsay Cates, Jeff Hyde
- Department Director: Jana Pettit, MBA
- Program Administrators: Christine Mac Donald, PhD; Jim Pridgeon, MHA; Sylvia Zavatchen, MEd
- Program Coordinator: Julie Bould
- Jeff Ojemann
- Funding Agencies:
 - NIH NINDS Grant: Summer Research Experience in Translational Neuroscience and Neurological Surgery (Grant number: 5R25NS095377-04)
 - Department of Neurological Surgery
 - Royalty Research Funds
 - Institute of Translational Health Sciences
 - Washington Spinal Cord Injury Consortium
 - The Craig Nielsen Foundation
 - DoD CDMRP
 - Raisbeck Foundation

And we are fun!

Captain Hofstetter

