Electronically-Controlled Drug Release for SCI treatment

Christine Hau Neurological Surgery Summer Student Program 2019 PI: Rajiv Saigal, MD PhD

Introduction: What is Spinal Cord Injury (SCI)?

- > Damage to any part of spinal cord
- > 288,000 people live with SCI (NSCISC)
- > Primary injury: initial trauma
- > Secondary injury: inflammation

<u>nscisc.uab.edu</u>

Current Treatment Options for SCI

- > Early surgical decompression/stabilization
- > Elevate blood pressure
- > Systemic Steroids
 - Controversial
 - Systemic side effects
 - > Pneumonia
 - > Sepsis
 - > GI bleed
 - > Etc.

Focus of the Saigal Lab: Bioengineering materials for Spinal Cord Injury

Goal: local drug delivery

- Lower overall doses
- Higher % of drug to target tissue

Journal of Pharmacology and Experimental Therapeutics, 2017; Vector Stock Photos

Electronically-controlled Drug Release

- **Polypyrrole (PPy)** >
 - Conductive polymer
 - **Drug doping: Oxidation**
 - **Drug release: Reduction**

 A^{Θ} Ð NH NH ⊕ ΝH NH NH AΘ - 2n HA **Reduction:** NH NH NH NH reduced units oxidized units reduced units Royal Society of Chemistry, 2016

 $A^{-} = Drug$

Experimental Drugs

- > Minocycline
 - Anti-inflammatory drug
- > Quipazine
 - Serotonin receptor agonist drug
 - May assist with rehabilitation post-
 - > Improves locomotion
 - > Enables spinal cord neural circuitry

Experimental question:

How do varying NaDBS levels affect controlled drug release?

4 mg/mL Minocycline in NaDBS

0.5 mg/mL Quipazine in NaDBS

Conclusion: How does NaDBS affect release?

Minocycline

> Minimal levels of NaDBS allow maximum drug release

Quipazine

- > High levels of NaDBS may be beneficial
- > Release may change with higher initial drug concentration

Future Work

- > Current students are developing implants using polypyrrole
- Eurther evelore personator cases to entimize r

Acknowledgements

- > UW Neurosurgery
 - Richard G. Ellenbogen, MD, FACS
 - Sandra Ellenbogen, RN
 - Jana Pettit, MBA
 - Christine Mac Donald
 PhD
 - Jim Pridgeon, MHA
 - Sylvia Zavatchen, MEd
 - Julie Bould

- > Saigal Lab
 - Rajiv Saigal MD, PhD
 - Karley Benoff
 - Joyce Huang
 - Max Walter
 - Richard Buksch III
 - Hannah Weaver
 - Alejandro Diaz
 - Charles Smith

Grant title: Summer Research Experience in Translational Neuroscience and Neurological Surgery

Grant number: 5R25NS095377-04

Thank you!

> Any questions?

