Verification of Viral Vectors

UW Neurological Surgery Summer Student Program
Allen Institute for Brain Science
CJ Andrews & Haleigh Schwartz
“Our brains are what make us human… Yet despite decades of research—and impressive knowledge gathered about other aspects of the human body, including our entire genetic sequence—the brain remains largely unknown…The Allen Institute for Brain Science was established to answer some of the most pressing questions in neuroscience, grounded in an understanding of the brain and inspired by our quest to uncover the essence of what makes us human” (Allen Institute for Brain Science).
Project Objective

Verify viral vectors’ effectiveness in tagging medium spiny D1 or D2 neurons in the striatum
The Big Picture

Diseases/Conditions Affected by the Basal Ganglia:
- Huntington’s Disease
- Parkinson’s Disease
- Obsessive Compulsive Disorder
- Tourette Syndrome
- Addiction
- Schizophrenia
- Depression

Possible Applications:
- Studying D1 and D2 neurons
- Gene therapy
Method:

Retro-Orbital Injection → Perfusion → Immunohistochemistry & Electrophysiology

Retro-Orbital Injection

3 Weeks

Perfusion

(Yardeni et al., 2011)

(Gage, 2012)
Method:

Immunohistochemistry (IHC): using antibodies and fluorescence to detect the location of target antigens in whole tissue slices (Abcam)

Electrophysiology (Patch Clamp Method): “a versatile electrophysiological tool for understanding ion channel” conductance, voltage, and membrane potential (Molecular Devices)

Striatum (STR)
Substantia Nigra (SNr)
Globus Pallidus (GPe)
Project Results

DARPP32

anti GFP

Combined

CN2025

4x

20x
Possible Application

Parkinson’s Disease (PD): a degenerative neural disease as a result of dopamine (DA) depletion that disrupts the normal neural circuitry linking thoughts and action.

Medium spiny D1 and D2 neurons (D1 and D2 MSNs) are apart of the basal ganglia circuit that help facilitate movement, learning, and cognition but become dysfunctional with DA depletion (Wei, 2017).

The mechanisms behind the development of symptoms of PD are unknown.

Understanding how D1 and D2 MSNs function in healthy tissue is a necessary first step in discovering their role in PD.

(Delong, 2006)
Acknowledgements

UW NSSSP
Chair & Program Director: Richard G. Ellenbogen, MD, FACS
Program Executive Advisor: Sandra Ellenbogen, RN
Department Director: Jana Pettit, MBA
Program Administrators: Christine Mac Donald, PhD; Jim Pridgeon, MHA; Sylvia Zavatchen, MEd
Program Coordinator: Julie Bould

Allen Institute for Brain Science:
Cell Types
Primary Investigator: Ed Lein, PhD
Assistant Investigator: Jonathan Ting, PhD
Senior Scientist: Meanhwan Kim, PhD
Research Assistant III & Lab Mentor: Peter Chong

Grants
NIH NINDS 5R25NS09537704: Summer Research Experience in Translational Neuroscience and Neurological Surgery
References

