Examining neuronal cell type specificity using FOXP2

Nazeli Acosta Neurological Surgery Summer Student Program Dr. Ed Lein, Dr. Rebecca Hodge

Who is Nazeli Acosta?

Rising Sophomore at Providence College studying Biomedical Engineering

Interested in tutoring, intellectual debates, finding sustainable solutions to problems in the developing world etc.

Attempts to classify cellular diversity in mouse cortex

В

BPC BTC DBC LBC MC NBC PC SBC

CCR CR CR

Miyoshi et al. J. Neurosci. 2007

Toledo-Rodriguez et al. J Physiol 2005

New approaches are needed to study brain structure, function and disease in human

Animal models of Alzheimer disease: historical pitfalls and a path forward

Sarah E. Cavanaugh¹, John J. Pippin¹, Neal D. Barnard^{1,2} ¹Physicians Committee for Responsible Medicine, Washington, D.C., USA; ²Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA

Genomic responses in mouse models poorly mimic human inflammatory diseases

Junhee Seok⁴¹, H. Shaw Warren^{b.1}, Alex G. Cuenca⁴¹, Michael N. Mindrinos⁴, Henry V. Baker⁴, Weihong Xu⁴, Daniel R. Richards⁴, Grace P. MCOnald-Smith⁴, Hong Gao⁴, Laura Henness⁴, Celeste C. Finnetr⁴, Ceclia M. López⁴, Shari Honar¹, Ernest E. Moore⁸, Joseph P. Mine⁴, Joseph C. Nucshier¹, Paul E. Banke⁴, Jeffrey L. Johnson¹, Jason Sperry¹, Avery B. Nathens⁴⁰, Timothy R. Billia⁴, Michael A. West⁴⁰, Marc G. Leschke⁶, Matthew B. Klein, Richard L. Gamell⁷, Nicole S. Gibran⁴, Bernard H. Brownstein⁶, Carol Miller-Graziano⁵, Steve E. Calvano⁴, Philip H. Mason⁴, J. Perren Cobb⁵, Laurence G. Rahme⁵, Stephen F. Lowny^{2,2}, Ronald V. Maier¹, Lyle L. Moldawer⁴, David N. Hemdon⁹, Ronald W. Davis^{4,3}, Wenzhong Xiao^{41,4}, Ronald G. Tompkins⁴⁹, and the Inflammation and Host Response to Injury, Large Scale Collaborative Research Program⁴

Research Program
Standrod Genoma Technology Center, Stanford University, Palo Alto, CA 94305; Departments of ¹Pediatrics and Medicine, Anesthesiology and Critical Care Medicine, and "Surgery, Masachurett General Hospital, Hanrard Medical School, Boston, MA 02114; ¹Oepartment of Surgery, University of Plorida College of Medicine, Careway, Masachurett General Hospital, Hanrard Medical School, Boston, MA 02114; ¹Oepartment of Surgery, University of Plorida College of Medicine, Careway, Masachurett General Hospital, Hanrard Medical School, Boston, MA 02114; ¹Oepartment of Surgery, Invienting of Plorida College of Medicine, Careway, Masachurett General Hospital, Care Medical Center, Dallas, T. 73302; ¹Oepartment of Surgery, Nathone Medical Center, University of Washington School of Medicine, Seattle, WA 8015; ¹Oepartment of Surgery, University of Rochetter School of Medicine, Schoel Care Medical Center, Dallas, T. 73302; ¹Oepartment of Surgery, Nathone of Surgery, Nathone Medical Center, Palas, T. 73302; ¹Oepartment of Surgery, Nathone Medical Center, Dallas, Care Medical Center, Palas, Care Medical Center, Dallas, Care Medical Center, Palas, Care Medical Center, Dallas, Care Medical Center, Da

Contributed by Ronald W. Davis, January 7, 2013 (sent for review December 6, 2012)

Am J Transl Res 2014;6(2):114-118 www.ajtr.org /ISSN:1943-8141/AJTR1312010

Review Article Lost in translation: animal models and clinical trials in cancer treatment

Isabella WY Mak^{1,2}, Nathan Evaniew^{1,2}, Michelle Ghert^{1,2}

³Department of Surgery, McMaster University, Hamilton, Ontario, Canada; ²Juravinski Cancer Centre, Hamilton Health Sciences, Hamilton, Ontario, Canada

Received December 20, 2013; Accepted December 5, 2013; Epub January 15, 2014; Published January 30, 2014

Abstract: Due to practical and ethical concerns associated with human experimentation, animal models have been essential in cancer research. However, the average rate of successful translation from animal models to clinical cancer trials is less than 8%. Animal models are limited in their ability to mimic the extremely complex process of human carcinogenesis, physiology and progression. Therefore the safety and efficacy identified in animal studies is generally not translated to human trials. Animal models can serve as an important source of *in vivo* information, but alternative translational approaches have emerged that may eventually replace the link between *in vito* studies and clinical applications. This review summarizes the current state of animal model translation to clinical practice, and offers some explanations for the general lack of success in this process. In addition, some alternative strategies to the classic *in vivo* approach are discussed.

Lost in translation: Treatment trials in the SOD1 mouse and in human ALS

Michael Benatar*

Department of Neurology, Emory University School of Medicine, Woodruff Memorial Building, 1639 Pierce Drive, Atlanta, GA 30322, USA

Received 20 October 2006; revised 12 December 2006; accepted 20 December 2006 Available online 3 January 2007

Human Cell Types Program: Using a systematic approach to study cell types in human neocortex

FOXP2 is associated with language and defines specific cortical cell types

It is a marker of layer 6 neurons in the cortex

This suggests **FOXP2** is involved in the feedback loop between the thalamus and the cortex

L5

L6

oxn

Middle Temporal Gyrus

NeuN staining of the mid temporal gyrus

Processing of neurosurgical tissue

section at 350 um

of interest

Isolation and sorting of single cells via FRISCR

Procedures

IHC and FACS staining results

Bioanalyzer Results

High quality cDNA from FOXP2 cell

		Siz	e [bp]	Conc. [pg/µl]	Molarity [p	mol/l]	Observations
Þ	•	1	35	125.00	5	5,411.3	Lower Marker
2			82	13.81		254.6	
3			93	60.99		989.8	
4			612	27.85		69.0	
5			648	26.91		62.9	
6			700	33.18		71.8	
7	Г		906	107.17		179.3	
8			977	54.99		85.2	
Res	ults	s <u>P</u> ea	k Table	Region Table	Legend		

Poor quality cDNA from FOXP2 cell

		Size [bp]	Conc. [pg/µl]	Molarity [pmol/l]	Observations
•	◀	35	125.00	5,411.3	Lower Marker
2		55	28.10	780.4	
3		10,380	75.00	10.9	Upper Marker

Acknowledgements

Allen Institute: Paul Allen & Jody Allen Ed Lein Rebecca Hodge Soraya Shehata John Mich University of Washington Department of Neurosurgery: Richard Ellenbogen Andrew Ko Jim Pridgeon Jeff Ojemann Christina Buckman Christine MacDonald Peter Chiarelli Richard Rapport

