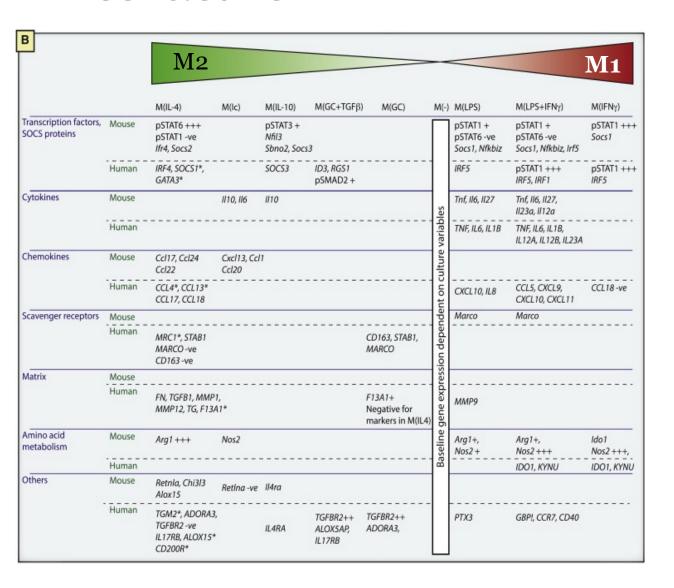
# Analysis of Macrophage Polarization via qPCR

Reid Watson

Crane Lab Ben Towne Center for Childhood Cancer Research

# Myeloid Cell Polarization

| <b>M</b> 1           | <b>M2</b>                                                                                     | MDSC                                                   |
|----------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Classical Macrophage | <ul> <li>Alternative<br/>Macrophage</li> <li>Tumor-associated<br/>Macrophage (TAM)</li> </ul> | Myeloid-derived<br>suppressor cell                     |
| • Pro-inflammatory   | Anti-inflammatory                                                                             | Anti-inflammatory                                      |
| • Anti-tumor         | • Pro-tumor                                                                                   | <ul><li> Pro-tumor</li><li> Suppress T cells</li></ul> |


Distinction between M2 and MDSCs still poorly understood



# Purpose

- Macrophage gene expression poorly understood
  - Identify protocols for reliable macrophage differentiation
  - Classify gene expression profiles of M1, M2,
     MDSC
- Genetically engineered macrophages (GEMs)
  - Help T cells fight solid tumors, such as glioblastoma (GBM)

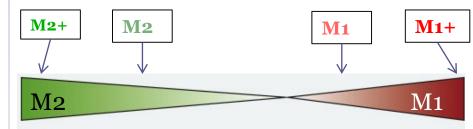
## Literature



#### **Canonical Findings**

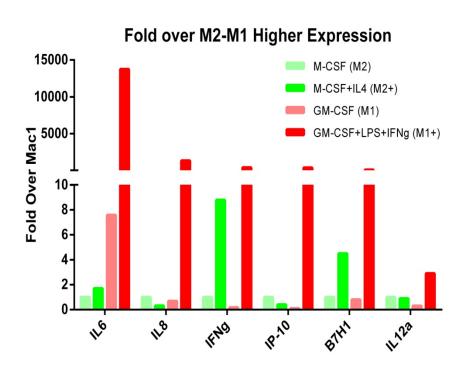
| <b>M2</b> | M1       |
|-----------|----------|
| • IL10    | • IFNg   |
| • CD163   | • IL8    |
| • TGFb    | • IL1b   |
|           | • IP-10  |
|           | • IL-12a |
|           | • IL-12b |
|           |          |

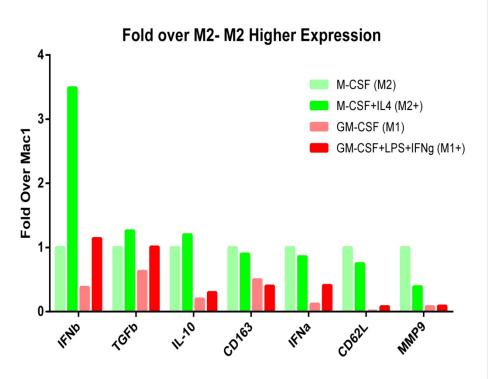



# Hypothesis

| Polarization Hypothesis |       |             |  |
|-------------------------|-------|-------------|--|
| M1                      | M2    | MDSC marker |  |
| IFNg                    | MMP9  | CD62L       |  |
| TNFa                    | CD163 | iNos        |  |
| IL-8                    | TGFb  | MMP9        |  |
| IL-6                    | IL-10 | Arginase    |  |
| IP-10                   | VEGF  |             |  |
| IL-1b                   |       |             |  |
| IL-12a                  |       |             |  |
| IL-12b                  |       |             |  |
| IFNa                    |       |             |  |
| IFNb                    |       |             |  |



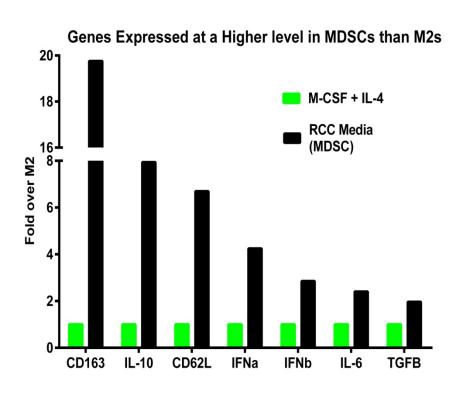

# qPCR Analysis

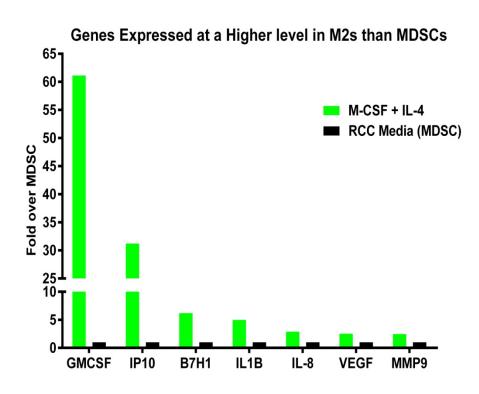

- Sample Treatments
  - Panel 1
    - M2: M-CSF
    - M2+ : M-CSF + IL4
    - M1: GM-CSF
    - M1+ : GM-CSF + LPS + IFNg
  - Panel 2
    - M2+ : M-CSF + IL-4
    - MDSC: Tumor cellconditioned media



## Results (Panel 1)

#### **Differential Gene Expression Profiles**






## Results (Panel 2)

#### **Differential Gene Expression Profiles**





## Conclusions

#### Panel 1

- M1+ (GM-CSF + LPS + IFNg) treatment presents strongest pro-inflammatory gene expression vs. M2
  - IFNg, IL-8, IL-6, IP-10, IL-12a, IL-12b: Confirmed
  - PDL-1 also expressed at high levels
- M2+ (M-CSF + IL-4) treatment presents strongest anti-inflammatory gene expression vs. M1
  - · TGFb, IL-10, CD163: Confirmed
  - IFNa/IFNb: Unexpected upregulation

#### Panel 2

- <u>M2+</u> treatment (M-CSF + IL-4) presents higher expression <u>pro-inflammatory</u> signals vs. MDSC
- MDSC cells expressing higher levels of <u>anti-inflammatory</u> signals vs. M2



# Thank you

- Crane Lab
  - Courtney Crane, Principal
     Investigator
  - Kara White Moyes, Postdoctoral
     Fellow
  - Nicole Perry, Postdoctoral Fellow
  - Kristen Haberthur, Postdoctoral
     Fellow
  - Shannon Kreuser
  - Amira Davis
  - Harrison Chinn
  - Katie Hoon

- UW Neurosciences Summer Student Program
  - Dr. and Mrs. Ellenbogen
  - Jim Pridgeon
  - Christina Buckman